Key Point

2. Sum of product of elements of any row (column) with cofactors of corresponding elements of any other row (column) is ZERO.

$$
\mathbf{D}=\left|\begin{array}{lll}
\mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\
\mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\
\mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33}
\end{array}\right|
$$

$$
\Rightarrow \mathbf{a}_{11} \mathbf{C}_{21}+\mathbf{a}_{12} \mathbf{C}_{22}+\mathbf{a}_{13} \mathbf{C}_{23}=0
$$

$$
D=\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 6 \\
5 & 7 & 8
\end{array}\right|=38
$$

$\mathrm{C}_{11}=-42 \quad \mathrm{C}_{12}=-2 \quad \mathrm{C}_{13}=28$
$\mathrm{C}_{21}=5 \quad \mathrm{C}_{22}=-7 \quad \mathrm{C}_{23}=3$
$\mathrm{C}_{31}=12 \quad \mathrm{C}_{32}=6 \quad \mathrm{C}_{33}=-8$

$$
D_{c}=\left|\begin{array}{ccc}
-42 & -2 & 28 \\
5 & -7 & 3 \\
12 & 6 & -8
\end{array}\right|=(38)^{2}
$$

3. $\mathbf{D}=\left|\begin{array}{lll}\mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33}\end{array}\right| \mathbf{D}_{\mathrm{C}}=\left|\begin{array}{lll}\mathbf{C}_{11} & \mathbf{C}_{12} & \mathbf{C}_{13} \\ \mathbf{C}_{21} & \mathbf{C}_{22} & \mathbf{C}_{23} \\ \mathbf{C}_{31} & \mathbf{C}_{32} & \mathbf{C}_{33}\end{array}\right|$

Then, $\mathrm{D}_{\mathrm{C}}=\mathrm{D}^{2}$
\therefore In general, $D_{C}=D^{n-1}$
Where ' n ' is the order of determinant.

e"Saral

Determinant

4. Properties of Determinants

Property - 1

1. The value of a determinant remains unchanged, if the rows \& columns are interchanged.

$$
\mathbf{D}=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & \mathbf{c}_{3}
\end{array}\right| \quad\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=D^{\mathrm{T}}
$$

$$
\mathbf{C}_{1} \rightarrow \mathbf{R}_{1} \quad \mathbf{C}_{2} \rightarrow \mathbf{R}_{2} \quad \mathbf{C}_{3} \rightarrow \mathbf{R}_{3}
$$

Property - 2
2. If any two rows (or columns) of a
determinant are interchanged, the value
of determinant is changed in sign only.
$D=\left|\begin{array}{lll}a_{1} & b_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right| \mathbf{R}_{1} \leftrightarrow \mathbf{R}_{2}\left|\begin{array}{lll}\mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|=-\mathbf{D}$

Property - 3

3. If a determinant has any two rows
(or columns) identical, then its value is ZERO.

$$
D=\left|\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\
\mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\
\mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2}
\end{array}\right| \text { Here, } \mathbf{R}_{2}=\mathbf{R}_{3}
$$

$=a_{1} \times\left(b_{2} c_{2}-b_{2} c_{2}\right)-b 1 \times\left(a_{2} \leq a_{2} c_{2}\right)$
$+c 1 \times\left(a_{2} b_{2} \quad a_{2} b 2\right)=0$

Property - 4

4. If all the elements of any row (or column) are multiplied by the same number, then value of the determinant is multiplied by that number.
$D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \& D^{\prime}=\left|\begin{array}{ccc}M a_{1} & M b_{1} & M c_{1} \\ a_{2} & b_{2} & c_{2} \\ N a_{3} & \mathbf{c b}_{3} & \mathbf{N c}_{3}\end{array}\right|$
Then, $\mathrm{D}^{\prime}=\mathrm{M} . \mathrm{N} . \mathrm{D}$

Property - 5

5. If each element of any row (or column) can be expressed as a sum of two or more terms, then the determinant can be expressed as the sum of two or more determinants.
$\mathbf{D}=\left|\begin{array}{cc}\mathbf{a}+\mathbf{x} & \mathbf{b}+\mathbf{y} \\ \mathbf{c} & \mathbf{d}\end{array}\right|=\left|\begin{array}{ll}\mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d}\end{array}\right|+\left|\begin{array}{ll}\mathrm{x} & \mathrm{y} \\ \mathbf{c} & \mathrm{d}\end{array}\right|$
$=(\mathbf{a}+\mathbf{x}) \mathbf{d}-\mathbf{c}(\mathbf{b}+\mathbf{y})(\mathbf{a d}-\mathbf{b c})+(x d-y c)$
$=(\mathbf{a d}-\mathbf{b c})+(\mathbf{x d}-\mathbf{y c})$

Download eSaral App for JEE | NEET | Class 9,10

