1. Introduction

Value of the Determinant
$D=\left|\begin{array}{l}a_{1} \\ a_{2}\end{array} X_{b_{2}}^{b_{1}}\right| \quad D=\left|\begin{array}{l}2 \\ 3\end{array} X_{4}^{1}\right|$

$$
\begin{aligned}
D=a_{1} b_{2}-a_{2} b_{1} \quad D & =2 \times 4-3 \times 1 \\
& =8-3=5
\end{aligned}
$$

Note
A determinant of order 1 is the number $\underset{\text { itself. }}{\Rightarrow|\mathbf{x}|}=\mathbf{x}\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|$
Expanding the Determinant
$\mathbf{a}_{1}\left|\begin{array}{ll}\mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|-\mathbf{b}_{1}\left|\begin{array}{ll}\mathbf{a}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{c}_{3}\end{array}\right|+\mathbf{c}_{1}\left|\begin{array}{ll}\mathbf{a}_{2} & \mathbf{b}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3}\end{array}\right|$
This is know as row-wise expansion of the determinant.

2. General Representation of

 DeterminantA general third order determinant is represented by :
Note
$\mathrm{N}=\left|\begin{array}{lll}\mathbf{a}_{11} & \overline{\mathbf{a}_{12}} & \mathbf{a}_{13} \\ \overline{\mathbf{a}_{21}} & \mathbf{a}_{22} & \overline{\mathbf{a}_{23}} \\ \mathbf{a}_{31} & \overline{\mathbf{a}_{32}} & \mathbf{a}_{33}\end{array}\right|$

e"Saral

Determinant

In the similar fashion we can expand a determinant in 6 different ways using elements of $\mathbf{R}_{1}, R_{2}, R_{3}, C_{1}, C_{2} \& C_{3}$.

3. Minors and Cofactors

Minors

General third order determinant :

$$
\mathrm{D}=\left|\begin{array}{lll}
\mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\
\mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\
\mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33}
\end{array}\right|
$$

Minor of elements :
$a_{11}=\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right| \quad a_{12}=\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right| \quad a_{13}=\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$
Minor of element $a_{23}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|$
General third order determinant :

$$
D=\left|\begin{array}{lll}
\mathbf{a}_{11} & \mathbf{a}_{12} & a_{13} \\
\mathbf{a}_{21} & \mathbf{a}_{22} & a_{23} \\
\mathbf{a}_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Hence, Minor of an element is defined as the minor determinant obtained by deleting a particular row and column in which that element lies.

Cofactors
General third order determinant :

$$
D=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Cofactor of any element a_{ij} of determinant D is given by :

$$
\mathrm{C}_{\mathrm{ij}}=(-\mathbf{1})^{\mathrm{i}+\mathrm{j}} \cdot \mathrm{M}_{\mathrm{ij}}
$$

\therefore Cofactor is nothing but minor with a proper sign.

$$
\begin{aligned}
& C_{12}=(-1)^{1+2} \cdot M_{12}=(-1)\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& \mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \cdot \mathrm{M}_{\mathrm{ij}} \\
& C_{22}=(-1)^{2+2} \cdot M_{22}=(1)\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| \\
& \text { We know that, } \\
& D=a_{11} M_{11}-a_{12} M_{12}+a_{13} M_{13} \\
& D=\mathbf{a}_{11} M_{11}+\mathbf{a}_{12}\left(-M_{12}\right)+a_{13} M_{13} \\
& \Rightarrow D=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}
\end{aligned}
$$

Key Point

1. Sum of product of elements of any row (column) with their corresponding cofactors is equal to the value of DETERMINANT.

$$
\Rightarrow \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{c}_{\mathrm{ij}}=\mathrm{D}
$$

