
(5) whole area of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Area Under the Curve

area of $\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{9}=1$

\therefore Area $=\pi$.(2).(3) $=6 \pi$

5. Area enclosed by inverse of a function

The area bounded by a curve (say $\mathrm{y}=$ $f(\mathbf{x})$) on x axis is equal to

The area bounded by the inverse of that curve $\left(f^{-1}(x)\right)$ on y axis.

4. Finding Area by Shifting of Origin
 e.g.

Shifting of Origin

Since area remains invariant even if the coordinate axes are shifted.

Hence, shifting of origin in many cases prove to be very convenient in computing the areas.
$\left|\begin{array}{c}\mathbf{A}_{1} \\ \text { Area bounded by } \\ \mathbf{f}(x)=\ell \mathbf{n x} \\ (x=1) \&(x=e) \\ \& x-\text { axis }\end{array}\right|=\left|\begin{array}{c}\mathbf{A}_{2} \\ \text { Area bounded by } \\ \mathbf{f}^{-1}(x)=e^{x} \\ (y=1) \&(y=e) \\ \& y-\text { axis }\end{array}\right|$

$$
\begin{aligned}
& \text { ordinates at } x=a, x=b \\
& y=f(x) \\
& y=f(c),[\text { where } c \in(a, b)] \\
& \text { is minimum when } \quad c=\frac{a+b}{2}
\end{aligned}
$$

Download eSaral App for JEE | NEET | Class 9,10

