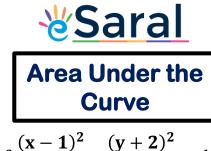


## **Shifting of Origin**

Since area remains invariant even if the coordinate axes are shifted.

Hence, shifting of origin in many cases prove to be very convenient in computing the areas.



area of 
$$\frac{(x-1)^2}{4} + \frac{(y+2)^2}{9} =$$

: Area = 
$$\pi$$
. (2). (3) =  $6\pi$ 

## 5. Area enclosed by inverse of a function

The area bounded by a curve (say y = f(x)) on x axis is equal to

The area bounded by the inverse of that curve  $(f^{-1}(x))$  on y axis.

e.g.

 $\mathbf{v} = \mathbf{e}^{\mathbf{x}}$ Ул e  $\mathbf{y} = \ell \mathbf{n} \mathbf{x}$ →X e

6. Variable Area Greatest & Least Value

## **Concept of Variable Area**

(Greatest And Least Value)

 $y = f(x) \rightarrow A$  monotonic function in (a, b)

Then, the area bounded by :

ordinates at x = a, x = b

$$y = f(x)$$
  
 $y = f(c)$ , [where  $c \in (a, b)$ ]

$$y = f(c), [where c \in (a, b)]$$

is minimum when  $c = \frac{a+b}{2}$ 



## **Download eSaral App for** JEE | NEET | Class 9,10



 $A_1$  $A_2$ Area bounded by Area bounded by  $\mathbf{f}^{-1}(\mathbf{x}) = \mathbf{e}^{\mathbf{x}}$  $f(x) = \ell nx$