(2) In case horizontal strip is taken Then we have,

$$
\begin{aligned}
& A=\int_{y_{1}}^{y_{2}}[f(y)-g(y)] d y
\end{aligned}
$$

(3) If the curves $y=f(x)$ and $y=g(x)$ intersect at $x=c$, then required area is :

$$
A=\int_{\mathbf{a}}^{\mathbf{c}}(g(x)-f(x)) d x+\int_{\mathbf{c}}^{\mathbf{b}}(f(x)-g(x)) d x
$$

Area Under the

Curve

3. Standard Areas To Be Remembered

(1) Area bounded by :

$$
\begin{aligned}
& y=\sin x \quad \text { Where, } x \in[0, \pi] \\
& \therefore \text { Area }=\int_{0}^{\pi} \sin x d x=2
\end{aligned}
$$

(2) Area bounded by :

$$
y=\cos x
$$

Where, $x \in[0, \pi / 2]$

$$
\therefore \text { Area }=\int_{0}^{\pi / 2} \cos x d x=1
$$

(3) Area bounded by :

Parabolas $y^{2}=4 a x ; x^{2}=4 b y$

$$
(a>0 ; b>0) \quad A=\frac{16 a b}{3}
$$

Curve : $\mathbf{y}^{\mathbf{2}}=\mathbf{4 a x}$; its double ordinate at $x=k$
(chord perpendicular to the axis of symmetry)

Required Area $=\frac{2}{3}(\operatorname{area} \square \mathrm{ABCD})$

Download eSaral App for JEE | NEET | Class 9,10

