2. Area Enclosed between two Curves

(2) In case horizontal strip is taken Then we have,

(3) If the curves y = f(x) and y = g(x)

intersect at x = c, then required area is :

$$A = \int_{a}^{c} (g(x) - f(x))dx + \int_{c}^{b} (f(x) - g(x))dx$$
(2) Area bounded by:

$$y = \cos x$$

$$= \int_{a}^{b} |f(x) - g(x)|dx$$
(2) Area bounded by:

$$y = \cos x$$
Where, $x \in [0, \pi/2]$

$$\therefore Area = \int_{c}^{\pi/2} \cos x \, dx = 1$$

$$\therefore \text{ Area} = \int_{0}^{1/2} \cos x \, dx$$

$$x = a \quad c \quad x = b$$

Download eSaral App for

JEE | NEET | Class 9,10

s
Area Under the
Curve
3. Standard Areas To Be Remembered
(1) Area bounded by:

$$y = \sin x$$
 Where, $x \in [0, \pi]$
 \therefore Area $= \int_{0}^{\pi} \sin x \, dx = 2$
(3) Area bounded by:
 $y = \sin x \, dx = 2$
(3) Area bounded by:
 $x^2 = 4by$
 $x^2 = 4by$
 $x^2 = 4by$
 $y^2 = 4ax;$ $x^2 = 4by$
 $x^2 = 4by$
(a > 0; b > 0) $A = \frac{16ab}{3}$
 $x^2 = 4by$
 $y^2 = 4ax$
(4) Area enclosed by
 $y = \cos x$
Where, $x \in [0, \pi/2]$
 $\pi/2$
(b) Curve : $y^2 = 4ax;$ its double ordinate $at x = k$
(chord perpendicular to the axis of symmetry)

Required Area = $\frac{2}{3}$ (area \square ABCD)

