1. Area Under the Curves

(1) Area bounded by the curve, the x - axis $\&$ the ordinates at $(x=a, b)$ is given by :

$$
=\int_{\mathbf{a}}^{\mathbf{A}} \mathbf{y} \mathbf{d x}
$$

Where, $y=f(x)$ lies above the x-axis and ($b>a$)

(2) If $y=f(x)$ lies completely below the \mathbf{x}-axis then,

(3) If curve crosses the \mathbf{x}-axis at $\mathrm{x}=\mathrm{c}$ then,

$$
A=\left|\int_{a}^{c} y d x\right|+\int_{c}^{b} y d x
$$

$$
=\int_{a}^{b} f(y) d y(d y: \text { horizontal strip) }
$$

2. Area Enclosed between two Curves

(1) Area bounded by two curves:

$$
y=f(x) \& y=g(x)
$$

Such that, $f(x)>g(x)$ is given by :

Area Under the

 Curvehas ' n ' symmetric portions
Then,

$$
\text { Total Area }=
$$

Total Area $=$
$\mathbf{n}($ Area of symmetric
portion $)$
Total Area $=$
$\mathbf{n}($ Area of symmetric
portion $)$

Note
If the curve be symmetric and suppose it
(4) Area bounded by the curve, y -axis \& the two abscissa at $\mathrm{y}=\mathrm{a}$ $\& y=b$ is given by :
$A=\int_{a}^{b} x d y \quad\left(\right.$ Integration w. r. t. $\left.{ }^{\prime} y^{\prime}\right)$

$$
\mathbf{A}=\int_{\mathbf{x}_{1}}^{\mathbf{x}_{2}}[f(\mathbf{x})-\mathbf{g}(\mathbf{x})] \mathbf{d x}
$$

Where,
x_{1} and x_{2} are roots of equation

$$
\mathbf{f}(\mathbf{x})=\mathbf{g}(\mathbf{x})
$$

Download eSaral App for JEE | NEET | Class 9,10

GET IT ON

Google Play

