1. Binomial Theorem General Expansion

 $(x + y)^n = {}^nC_0 x^n y^0 + {}^nC_1 x^{n-1} y^1 + {}^nC_2 x^{n-2} y^2 + \dots + {}^nC_n x^0 y^n$

General Term :

$$T_{r+1} = {}^{n}C_{r} x^{n-r} y^{r}$$
 where, $0 \le r \le n$

- 1) The number of terms in the expansion of $(x+y)^n$ is (n+1) i.e. one more than the index .
- 2) The sum of the indices of x & y in each term is n.
- 3) Power of first variable (x) decreases while of second variable (y) increases.
- 4) Binomial coefficients of the terms equidistant from the beginning and from the end are equal.
- 5) Binomial coefficients of the middle term is greatest.
- 6) mth Term from the END

 $[from the end] \longleftrightarrow T_{n-m+2}$ [from the beginning]

2. Middle Term

Middle term in the expansion of $(I + II)^n$ is

$$\begin{cases} T_{\frac{n}{2}+1} & \text{when n is even} \\ T_{\frac{n+1}{2}} & \& T_{\frac{n+3}{2}} & \text{when n is odd} \end{cases}$$

In binomial expansion, middle term has greatest binomial coefficient and if there are 2 middle terms, their coefficients will be equal.

Binomial Theorem

 \Rightarrow

ⁿC_r will be max
where
$$r = \frac{n}{2}$$
, if n is even
where $r = \frac{n-1}{2}$ or $\frac{n+1}{2}$, if n is c

- 3. Number of Terms in Expansion

 (a) If n is ODD, then number of terms in (x + a)ⁿ ± (x a)ⁿ is n + 1/2

 (b) If n is EVEN, then number of terms in

 (i) (x + a)ⁿ + (x a)ⁿ is n/2 + 1
 (ii) (x + a)ⁿ (x a)ⁿ is n/2
- 4. Numerically Greatest Term in the expansion of $(a + bx)^n$

$$\left(\frac{n+1}{1+|\frac{I}{II}|}\right) - 1 \le r \le \left(\frac{n+1}{1+|\frac{I}{II}|}\right)$$

5. Standard Binomial Expansion

$$(1+x)^n = C_0 x^0 + C_1 x^1 + C_2 x^2 + \dots + C_n x^n$$

Note : Binomial coefficient & Coefficient of \boldsymbol{x}^r are equal

6. Properties of Binomial Coefficients & Summation of Series

$$\sum_{r=0}^{n} {}^{n}C_{r} = 1^{m} \qquad \sum_{r=0}^{n} {}^{\prime} \left| \Theta({}^{q}{}^{n}C_{r} = 0 \right|$$

$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots = 2^{n-1}$$

- odd ${}^{n}C_{1} + 2.{}^{n}C_{2} + 3.{}^{n}C_{3} + \dots + (n-1).{}^{n}C_{n-1}$ + $n.{}^{n}C_{n} = n. 2^{n-1}$
 - $(1)^2 . C_1 + (2)^2 . C_2 + (3)^2 . C_3 + \dots +$ (n)² . C_n = n (1 + n) 2ⁿ⁻²

•
$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1} - 1}{n+1}$$

•
$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots + (-1)^n \frac{C_n}{n+1} = \frac{1}{n+1}$$

•
$$C_0^2 + C_1^2 + C_2^2 + C_3^2 + \dots + C_n^2 = {}^{2n}C_n = \frac{(2n)!}{n!n!}$$

•
$$B_{/}B_{q} * B_{0}B_{q^{*}0} * ---- * Bm_{qBm} < {}^{2n}C_{n|q}$$

= $\frac{(2n)!}{(n+r)!(n-r)!}$

Download eSaral App for JEE | NEET | Class 9,10

