1. Binomial Theorem

General Expansion

$$
(x+y)^{n}={ }^{n} C_{0} x^{n} y^{0}+{ }^{n} C_{1} x^{n-1} y^{1}+{ }^{n} C_{2} x^{n-2} y^{2}+
$$

$$
\ldots .+{ }^{n} C_{n} x^{0} y^{n}
$$

General Term :

$$
T_{r+1}={ }^{n} C_{r} x^{n-r} y^{r} \quad \text { where, } 0 \leq r \leq n
$$

1) The number of terms in the expansion of $(x+y)^{n}$ is $(n+1)$ i.e. one more than the index .
2) The sum of the indices of $x \& y$ in each term is n.
3) Power of first variable (x) decreases while of second variable (y) increases.
4) Binomial coefficients of the terms equidistant from the beginning and from the end are equal.
5) Binomial coefficients of the middle term is greatest.
6) $\mathrm{m}^{\text {th }}-$ Term from the END
$\underset{\text { [from the end] }}{T_{m}} \stackrel{\underset{\text { [from the beginning] }}{ }}{T_{n-m+2}}$

2. Middle Term

Middle term in the expansion of $(\mathrm{I}+\mathrm{II})^{\mathrm{n}}$ is
$\left\{\begin{array}{cl}T_{\frac{n}{2}+1} & \text { when } n \text { is even } \\ \frac{T_{n+1}^{2}}{} \& \frac{T_{n+3}^{2}}{2} & \text { when } n \text { is odd }\end{array}\right.$
In binomial expansion, middle term has greatest binomial coefficient and if there are 2 middle terms, their coefficients will be equal.

Binomial Theorem

6. Properties of Binomial Coefficients

 \& Summation of Series$$
\begin{array}{|l|}
\hline \sum_{r=0}^{n}{ }^{n} C_{r}=1^{m} \quad \sum_{r=0}^{n} \cdot \rho\left({ }^{\mathrm{q}}{ }^{n} C_{r}=0\right. \\
C_{0}+C_{2}+C_{4}+\ldots=C_{1}+C_{3}+C_{5}+\ldots=2^{n-1} \\
\hline
\end{array}
$$

$$
\bullet{ }^{n} C_{1}+2 \cdot{ }^{n} C_{2}+3 \cdot{ }^{n} C_{3}+\ldots . \ldots . .+(n-1) \cdot{ }^{n} C_{n-1}
$$ $+\mathrm{n} .{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=\mathbf{n} . \mathbf{2}^{\mathrm{n}-1}$

3. Number of Terms in Expansion
(a) If \mathbf{n} is ODD, then number of terms in

$$
(x+a)^{n} \pm(x-a)^{n} \quad \text { is } \frac{n+1}{2}
$$

(b) If \mathbf{n} is EVEN, then number of terms in
(i) $(x+a)^{n}+(x-a)^{n} \quad$ is $\frac{n}{2}+1$
(ii) $(x+a)^{n}-(x-a)^{n}$ is $\frac{n}{2}$

4. Numerically Greatest Term in the

 expansion of $(\mathbf{a}+\mathbf{b x})^{\mathbf{n}}$$$
\left(\frac{n+1}{1+\left|\frac{I}{I I}\right|}\right)-1 \leq r \leq\left(\frac{n+1}{1+\left|\frac{I}{I I}\right|}\right)
$$

$$
\cdot C_{0}^{2}+C_{1}^{2}+C_{2}^{2}+C_{3}^{2}+\ldots .+C_{n}^{2}={ }^{2 n} C_{n}=\frac{(2 n)!}{n!n!}
$$

$$
\bullet \mathbf{B} / \mathbf{B}_{\mathbf{q}} * \mathbf{B}_{0} \mathbf{B}_{\mathbf{q}^{*} 0} \ldots * \mathbf{B m}_{\mathrm{qBm}}<{ }^{2 \mathrm{n}} \mathbf{C}_{\mathrm{n} \mid \mathrm{q}}
$$

5. Standard Binomial Expansion

$$
(1+x)^{n}=C_{0} x^{0}+C_{1} x^{1}+C_{2} x^{2}+\ldots \ldots+C_{n} x^{n}
$$

$$
=\frac{(2 n)!}{(n+\mathbf{r})!(\mathbf{n}-\mathbf{r})!}
$$

Note: Binomial coefficient \& Coefficient of x^{r} are equal

