Class X
 Mathematics -Standard Question Paper

Max. Marks: 80

Duration: 3 hrs

General Instructions:

All the questions are compulsory.

1. The question paper consists of 40 questions divided into 4 sections A, B, C, and D.
2. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
3. There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
4. Use of calculators is not permitted.

SECTION A

Question numbers 1 to 20 carry 1 mark each.
Q 1- Q 10 are multiple choice questions. Select the most appropriate answer from the given options.

Q1. π is:
(A) A rational number
(B) Not a real number
(C) An irrational number
(D) Terminating decimal

Q2. Which of the following is/are correct?
(i) Every integer is a rational number.
(ii) The sum of a rational number and an irrational number is an irrational number.
(iii) Every real number is rational
(iv) Every point on a number line is associated with a real number.
(A) (i), (ii) and (iii)
(B) (i), (ii), (iii) and (iv)
(C) (i), (ii) and (iv)
(D) (ii), (iii) and (iv)

Q3. The product of a non-zero rational and an irrational number is :
(A) always irrational
(B) always rational
(C) rational or irrational
(D) one

Q4. Degree of a zero polynomial is:
(A) 0
(B) 1
(C) not defined
(D) none of these

Q5. If $a<0$, then graph of $y=a x^{2}+b x+c$ can be:
(A)

(B)

(C)

(D)

Q6. If two positive integers p and q can be expressed as $p=a b^{2}$ and $q=a^{3} b ; a$, b being prime numbers, then $\operatorname{LCM}(p, q)$ is:
(A) ab
(B) $a^{2} b^{2}$
(C) $a^{3} b^{2}$
(D) $a^{3} b^{3}$

Q7. Find the value of y if $x=3$ in given equation: $-3 x+2 y-3=0$.
(A) 15
(B) 6
(C) 7
(D) -6

Q8. The pair of equations $x=0$ and $y=-7$ has
(A) One solution
(B) Two solutions
(C) Infinitely many solutions
(D) No solution

Q9. The equation $4 \mathrm{p}^{2} \mathrm{x}^{2}+12 \mathrm{pqx}+5 \mathrm{q}^{2}=0$ have $(\mathrm{p}, \mathrm{q} \neq 0)$
(A) real and equal roots
(B) real and unequal roots
(C) no real roots
(D) None of these

Q10. If the sum of first n terms of an $A P$ be $3 n^{2}-n$ and its common difference is 6 , then its first term is:
(A) 2
(B) 3
(C) 1
(D) 4

(Q 11-Q15) Fill in the Blanks

Q11. Graph of a linear polynomial is \qquad

Q12. Every quadratic polynomial can have at most \qquad

Q13. Value of D when root of $a x^{2}+b x+c=0$ are real and unequal will be. \qquad

Q14. The first and last term of an A.P. are 1 and 11. If the sum of its terms is 36 , then the number of terms will be \qquad

Q15. A polynomial of degree n has \qquad
(Q16-Q20) Answer the following
Q16. Find two irrational numbers lying between $\sqrt{2}$ and $\sqrt{3}$.

Q17. Find the degree of the polynomial:
(i) $2 y^{12}+3 y^{10}-y^{15}+y+3$
(ii) 8

Q18. On comparing the ratios $\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}} \& \frac{c_{1}}{c_{2}}$ and without drawing them, find out whether the lines representing the following pair of linear equations intersect at a point, are parallel or coincide: $5 x-4 y+8=0,7 x+6 y-9=0$

OR
Find the value of m, if $x=2$ is a zero of quadratic polynomial $3 x^{2}-m x+4$.

Q19. Write the first three terms in each of the sequence defined by $a_{n}=3 n+2$

Q20. From given rational number check whether it is terminating or non-terminating

$$
\frac{13}{3125}
$$

SECTION B

Question numbers 21 to 26 carry 2 mark each.
Q21. The $n^{\text {th }}$ term of a sequence is $3 n-2$. Is the sequence an A.P.? If so, find its $10^{\text {th }}$ term.

Q22. Solve the following quadratic equations: $7 x^{2}=8-10 x$

Q23. Solve the following systems of equations by eliminating ' y ': $3 x-y=3,7 x+2 y=20$

Q24. Find the remainder when $4 x^{3}-3 x^{2}+2 x-4$ is divided by $x-1$

Q25. Using Euclid's division algorithm, find the H.C.F. of 135 and 225

Q26. Find the value of the polynomial $5 x-4 x^{2}+3$ at: $x=-1$

SECTION C

Question numbers 27 to 34 carry 3 mark each.
Q27. Find the prime factors of 21252 using factor tree method.

Q28. Solve $2 x+3 y=11$ and $2 x-4 y=-24$ and hence find the value of ' m ' for which $y=m x+3$.

OR

Find the roots of the following quadratic equations (if they exist) by the method of completing the square $2 \mathrm{x}^{2}-7 \mathrm{x}+3=0$

Q29. For what value of m, roots of the equation $(3 m+1) x^{2}+(11+m) x+9=0$ are equal?

Q30. Determine the general term of an A.P. whose $7^{\text {th }}$ term is -1 and $16^{\text {th }}$ term 17 .

Q31. Explain why $7 \times 11 \times 13+13$ and $7 \times 6 \times 5 \times 4 \times 3+5$ are composite numbers.

OR

Find the zeroes of the quadratic polynomial $9 x^{2}-5$ and verify the relation between the zeroes and its coefficients.

Q32. Which term of the sequence $4,9,14,19, \ldots \ldots$ is 124 ?

Q33. Solve the following system of equations $43 x+35 y=207 ; 35 x+43 y=183$

Q34. Find a cubic polynomial with the sum of its zeroes, sum of the products of its zeroes taken two at a time, and product of its zeroes as $2,-7$ and -14 , respectively.

SECTION D

Question numbers 35 to 40 carry 4 mark each.

Q35. Show that any positive integer which is of the form $6 q+1$ or $6 q+3$ or $6 q+5$ is odd, where q is some integer.

Q36. A motor boat, whose speed is $15 \mathrm{~km} / \mathrm{hr}$ in still water, goes 30 km downstream and comes back in a total of 4 hours 30 minutes. Determine the speed of the stream.

OR
Obtain all the zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Q37. If m times $m^{\text {th }}$ term of an A.P. is equal to n times its $n^{\text {th }}$ term, show that the $(m+n)$ term of the A.P. is zero.

Q38. The sum of the digits of a two-digit number is 9 . Also, nine times this number is twice the number obtained by reversing the order of the number. Find the number.

Q39. Solve, $\frac{1}{x+y}+\frac{2}{x-y}=2 \frac{2}{x+y}-\frac{1}{x-y}=3$ where $x+y \neq 0$ and $x-y \neq 0$

OR

If α and β are the roots of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0,(\mathrm{a} \neq 0)$ then find the values of:
(i) $\alpha^{2}+\beta^{2}$
(ii) $\alpha^{3}+\beta^{3}$

Q40. The sum of $n, 2 n, 3 n$ terms of an A.P. are S_{1}, S_{2}, S_{3} respectively.
Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.

Class X Mathematics -Standard Answer Paper

Max. Marks: 80
Duration: 3 hrs

SECTION A

1. C
2. C
3. A
4. C
5. B
6. C
7. B
8. A
9. B
10. A
11. Straight line
12. Two zero
13. $\mathrm{D}>0$
14. 6
15. Exactly n zeroes
16. We know that, if a and b are two distinct positive irrational numbers, then $\sqrt{\mathrm{ab}}$ is an irrational number lying between a and b.
\therefore Irrational number between $\sqrt{2}$ and $\sqrt{3}$ is $\sqrt{\sqrt{2} \times \sqrt{3}}=\sqrt{\sqrt{6}}=6^{1 / 4}$
Irrational number between $\sqrt{2}$ and $6^{1 / 4}$ is $\sqrt{\sqrt{2} \times 6^{1 / 4}}=2^{1 / 4} \times 6^{1 / 8}$.
Hence required irrational number are $6^{1 / 4}$ and $2^{1 / 4} \times 6^{1 / 8}$.
17. (i) Since the term with highest exponent (power)

The highest power of the variable is $15 \Rightarrow$ degree $=15$.
(ii) $8=8 x^{0} \Rightarrow$ degree $=0$
18. Comparing the given equations with standard forms of equations $a_{1} x+b_{1} y+c_{1}=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$ we have,
$\mathrm{a}_{1}=5, \mathrm{~b}_{1}=-4, \mathrm{c}_{1}=8$;
$\mathrm{a}_{2}=7, \mathrm{~b}_{2}=6, \mathrm{c}_{2}=-9$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{5}{7}, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{-4}{6}$
$\Rightarrow \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$
Thus, the lines representing the pair of linear equations are intersecting.

OR

18. Since, $x=2$ is a zero of $3 x^{2}-m x+4$
$\Rightarrow 3(2)^{2}-\mathrm{m} \times 2+4=0$
$\Rightarrow 12-2 \mathrm{~m}+4=0$, i.e., $\mathrm{m}=8$.
19. We have, $a_{n}=3 n+2$

Putting $\mathrm{n}=1,2$ and 3 , we get
$\mathrm{a}_{1}=3 \times 1+2=3+2=5$,
$\mathrm{a}_{2}=3 \times 2+2=6+2=8$,
$\mathrm{a}_{3}=3 \times 3+2=9+2=11$
Thus, the required first three terms of the sequence defined by $a_{n}=3 n+2$ are 5,8 , and 11 .
20. $\frac{13}{3125}=\frac{13}{(5)^{5}}=\frac{13 \times 2^{5}}{2^{5} \times 5^{5}}=\frac{(13 \times 32)}{(10)^{5}}=$ terminating

SECTION B

21. We have $\mathrm{a}_{\mathrm{n}}=3 \mathrm{n}-2$

Clearly a_{n} is a linear expression in n. So, the given sequence is an A.P. with common difference 3.
Putting $\mathrm{n}=10$, we get
$\mathrm{a}_{10}=3 \times 10-2=28$
22. $7 x^{2}=8-10 x$

$$
\begin{aligned}
& \Rightarrow 7 \mathrm{x}^{2}+10 \mathrm{x}-8=0 \\
& \Rightarrow 7 \mathrm{x}^{2}+14 \mathrm{x}-4 \mathrm{x}-8=0 \\
& \Rightarrow 7 \mathrm{x}(\mathrm{x}+2)-4(\mathrm{x}+2)=0 \\
& \Rightarrow(\mathrm{x}+2)(7 \mathrm{x}-4)=0 \\
& \Rightarrow \mathrm{x}+2=0 \quad \text { or } \quad 7 \mathrm{x}-4=0 \\
& \Rightarrow \mathrm{x}=-2 \quad \text { or } \quad \mathrm{x}=\frac{4}{7}
\end{aligned}
$$

23. We have;

$$
\begin{align*}
& 3 x-y=3 \tag{1}\\
& 7 x+2 y=20 \tag{2}
\end{align*}
$$

From equation (1), we get;
$3 x-y=3$
$\Rightarrow y=3 x-3$
Substituting the value of ' y ' in equation (2), we get;
$\Rightarrow 7 \mathrm{x}+2 \times(3 \mathrm{x}-3)=20$
$\Rightarrow 7 \mathrm{x}+6 \mathrm{x}-6=20$
$\Rightarrow 13 \mathrm{x}=26$
$\Rightarrow \mathrm{x}=2$
Now, substituting $x=2$ in equation (1), we get;
$3 \times 2-y=3$
$\Rightarrow \mathrm{y}=3$
Hence, $\mathrm{x}=2, \mathrm{y}=3$.
24. Let $p(x)=4 x^{3}-3 x^{2}+2 x-4$

When $p(x)$ is divided by $(x-1)$, then by remainder theorem, the required remainder will be p (1)

$$
\begin{aligned}
& \mathrm{p}(1)=4(1)^{3}-3(1)^{2}+2(1)-4 \\
& =4 \times 1-3 \times 1+2 \times 1-4 \\
& =4-3+2-4=-1
\end{aligned}
$$

25. Starting with the larger number i.e., 225,
we get, $225=135 \times 1+90$
Now taking divisor 135 and remainder 90,
we get, $135=90 \times 1+45$
Further taking divisor 90 and remainder 45 ,
we get, $90=45 \times 2+0$
\therefore Required H.C.F. $=45$
26. Let $\mathrm{p}(\mathrm{x})=5 \mathrm{x}-4 \mathrm{x}^{2}+3$

At $\mathrm{x}=-1, \mathrm{p}(-1)=5(-1)-4(-1)^{2}+3=-5-4+3=-6$

SECTION C

27. (2)-21252
(2) 10626

(3) -5313
(7) -11771
(11) $\frac{1}{253}$
$\frac{1}{23}$
2

$\therefore 21252=2 \times 2 \times 3 \times 7 \times 11 \times 23=2^{2} \times 3 \times 11 \times 7 \times 23$.
28. We have,

$$
\begin{equation*}
2 x+3 y=11 \tag{1}
\end{equation*}
$$

$2 x-4 y=-24$
From (1), we have $2 x=11-3 y$
Substituting $2 x=11-3 y$ in (2),
we get $11-3 y-4 y=-24$
$-7 y=-24-11$
$\Rightarrow-7 y=-35$
$\Rightarrow \mathrm{y}=5$
Putting $\mathrm{y}=5$ in (1),
we get, $2 \mathrm{x}+3 \times 5=11$
$2 \mathrm{x}=11-15$
$\Rightarrow \mathrm{x}=-\frac{4}{2}=-2$
Hence, $x=-2$ and $y=5$
Again, putting $\mathrm{x}=-2$ and $\mathrm{y}=5$ in $\mathrm{y}=\mathrm{mx}+3$,
we get, $5 \mathrm{x}=\mathrm{m}(-2)+3$
$\Rightarrow-2 \mathrm{~m}=5-3$
$\Rightarrow \mathrm{m}=\frac{2}{-2}=-1$

OR

28. $2 x^{2}-7 x+3=0 \Rightarrow x^{2}-\frac{7}{2} x+\frac{3}{2}=0$
$\Rightarrow \frac{7}{4} \frac{3}{2} \mathrm{x}^{2}-2 \times \mathrm{x} \times \frac{7}{4}+\frac{3}{2}=0$
$\Rightarrow x^{2}-2 \times x \times \frac{7}{4}+\left(\frac{7}{4}\right)^{2}-\left(\frac{7}{4}\right)^{2}+\frac{3}{2}=0$
$\Rightarrow\left(\mathrm{x}-\frac{7}{4}\right)^{2}-\frac{49}{16}+\frac{3}{2}=0$
$\Rightarrow\left(x-\frac{7}{4}\right)^{2}-\left(\frac{49-24}{16}\right)=0$
$\Rightarrow\left(\mathrm{x}-\frac{7}{4}\right)^{2}-\frac{25}{16}=0$
i.e., $\left(x-\frac{7}{4}\right)^{2}=\frac{25}{16}$
$\Rightarrow \mathrm{x}-\frac{7}{4}= \pm \frac{5}{4}$
i.e., $x-\frac{7}{4}=\frac{5}{4}=$ or $x-\frac{7}{4}=-\frac{5}{4}$
$\Rightarrow x=\frac{7}{4}+\frac{5}{4}$ or $x=\frac{7}{4}-\frac{5}{4}$
$\Rightarrow \mathrm{x}=3$ or $\mathrm{x}=\frac{1}{2}$
29. Comparing the given equation with $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$;
we get: $\mathrm{a}=3 \mathrm{~m}+1, \mathrm{~b}=11+\mathrm{m}$ and $\mathrm{c}=9$
\therefore Discriminant, $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$
$=(11+m)^{2}-4(3 m+1) \times 9$
$=121+22 m+m^{2}-108 \mathrm{~m}-36$
$=\mathrm{m}^{2}-86 \mathrm{~m}+85$
$=\mathrm{m}^{2}-85 \mathrm{~m}-\mathrm{m}+85$
$=m(m-85)-1(m-85)$
$=(\mathrm{m}-85)(\mathrm{m}-1)$
Since the roots are equal, $D=0$
$\Rightarrow(\mathrm{m}-85)(\mathrm{m}-1)=0$
$\Rightarrow \mathrm{m}-85=0$ or $\mathrm{m}-1=0$
$\Rightarrow \mathrm{m}=85$ or $\mathrm{m}=1$
30. Let a be the first term and d be the common difference of the given A.P. Let the A.P. be $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots \ldots . \mathrm{a}_{\mathrm{n}}, \ldots \ldots$

It is given that $\mathrm{a}_{7}=-1$ and $\mathrm{a}_{16}=17$
$a+(7-1) d=-1$ and, $a+(16-1) d=17$
$\Rightarrow \mathrm{a}+6 \mathrm{~d}=-1$
and, $\mathrm{a}+15 \mathrm{~d}=17$
Subtracting equation (i) from equation (ii),
we get, $9 \mathrm{~d}=18$
$\Rightarrow \mathrm{d}=2$
Putting $\mathrm{d}=2$ in equation (i),
we get, $a+12=-1$
$\Rightarrow \mathrm{a}=-13$
Now, General term $=a_{n}$
$=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=-13+(\mathrm{n}-1) \times 2=2 \mathrm{n}-15$
31. Since,
$7 \times 11 \times 13+13=13 \times(7 \times 11+1)=13 \times 78=13 \times 13 \times 3 \times 2$;
that is, the given number has more than two factors and it is a composite number.
Similarly, $7 \times 6 \times 5 \times 4 \times 3+5=5 \times(7 \times 6 \times 4 \times 3+1)$
$=5 \times 505=5 \times 5 \times 101 \Rightarrow$ The given no. is a composite number.

OR

31. We have, $9 x^{2}-5=(3 x)^{2}-(\sqrt{5})^{2}=(3 x-\sqrt{5})(3 x+\sqrt{5})$

So, the value of $9 x^{2}-5$ is 0 ,
when $3 x-\sqrt{5}=0$ or $3 x+\sqrt{5}=0$
i.e., when $x=\frac{\sqrt{5}}{3}$ or $x=\frac{-\sqrt{5}}{3}$

Sum of the zeroes $=\frac{\sqrt{5}}{3}-\frac{\sqrt{5}}{3}=0=\frac{-(0)}{9}=\frac{- \text { coefficien } t \text { of } x}{\text { coefficien } t \text { of } x^{2}}$
Product of the zeroes $=\left(\frac{\sqrt{5}}{3}\right)\left(\frac{-\sqrt{5}}{3}\right)=\frac{-5}{9}=\frac{\text { cons tant term }}{\text { coefficien tof } \mathrm{x}^{2}}$
32. Clearly, the given sequence is an A.P. with first term $\mathrm{a}=4$ and common difference $\mathrm{d}=5$.

Let 124 be the $\mathrm{n}^{\text {th }}$ term of the given sequence.
Then, $\mathrm{a}_{\mathrm{n}}=124$
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=124$
$\Rightarrow 4+(\mathrm{n}-1) \times 5=124$
$\Rightarrow \mathrm{n}=25$
Hence, $25^{\text {th }}$ term of the given sequence is 124 .
33. The given system of equations is;

$$
\begin{align*}
& 43 x+35 y=207 \tag{1}\\
& 35 x+43 y=183 \tag{2}
\end{align*}
$$

Adding equation (1) and (2),
we get; $78 \mathrm{x}+78 \mathrm{y}=390$
$\Rightarrow 78(\mathrm{x}+\mathrm{y})=390$
$\Rightarrow \mathrm{x}+\mathrm{y}=5$
Subtracting equation (2) from the equation (1),
we get, $8 x-8 y=24$
$\Rightarrow \mathrm{x}-\mathrm{y}=3$
Adding equation (3) and (4),
we get, $2 \mathrm{x}=8$
$\Rightarrow \mathrm{x}=4$
Putting $x=4$ in equation (3),
we get, $4+y=5$
$\Rightarrow \mathrm{y}=1$
Hence, the solution of the system of equation is; $x=4, y=1$.
34. Let the cubic polynomial be
$a x^{3}+b x^{2}+c x+d$
$\Rightarrow \mathrm{x}^{3}+\frac{\mathrm{b}}{\mathrm{a}} \mathrm{x}^{2}+\frac{\mathrm{c}}{\mathrm{a}} \mathrm{x}+\frac{\mathrm{d}}{\mathrm{a}}$
and its zeroes are α, β and γ, then
$\alpha+\beta+\gamma=2=-\frac{b}{a}$
$\alpha \beta+\beta \gamma+\alpha \gamma=-7=\frac{\mathrm{c}}{\mathrm{a}}$
$\alpha \beta \gamma=-14=-\frac{d}{a}$
Putting the values of $\frac{b}{a}, \frac{c}{a}$ and $\frac{d}{a}$ in (1),
we get, $x^{3}+(-2) x^{2}+(-7) x+14$
$\Rightarrow x^{3}-2 x^{2}-7 x+14$

SECTION D

35. If a and b are two positive integers such that a is greater than b ; then according to Euclid's division algorithm; we have
$\mathrm{a}=\mathrm{bq}+\mathrm{r}$; where q and r are positive integers and $0 \leq \mathrm{r}<\mathrm{b}$.
Let $\mathrm{b}=6$, then $\mathrm{a}=\mathrm{bq}+\mathrm{r}$
$\Rightarrow \mathrm{a}=6 \mathrm{q}+\mathrm{r}$; where $0 \leq \mathrm{r}<6$.
When $\mathrm{r}=0 \Rightarrow \mathrm{a}=6 \mathrm{q}+0=6 \mathrm{q}$;
which is even integer
When $\mathrm{r}=1 \Rightarrow \mathrm{a}=6 \mathrm{q}+1$ which is odd integer
When $\mathrm{r}=2 \Rightarrow \mathrm{a}=6 \mathrm{q}+2$ which is even.
When $\mathrm{r}=3 \Rightarrow \mathrm{a}=6 \mathrm{q}+3$ which is odd.
When $r=4 \Rightarrow a=6 q+4$ which is even.
When $\mathrm{r}=5 \Rightarrow \mathrm{a}=6 \mathrm{q}+5$ which is odd.
This verifies that when $r=1$ or 3 or 5 ; the integer obtained is
$6 q+1$ or $6 q+3$ or $6 q+5$ and each of these integers is a positive odd number.

Hence the required result.
36. Let the speed of the stream $=x \mathrm{~km} / \mathrm{hr}$
\Rightarrow The speed of the boat downstream $=(15+x) \mathrm{km} / \mathrm{hr}$.
and, the speed of the boat upstream $=(15-x) \mathrm{km} / \mathrm{hr}$
Now, time taken to go 30 km downstream $=\frac{30}{15+\mathrm{x}} \mathrm{hrs}$.
and, time take to come back 30 km upstream $=\frac{30}{15-\mathrm{x}} \mathrm{hrs}$.
Given: the time taken for both the journeys $=4$ hours $30 \mathrm{~min} .=4 \frac{1}{2} \mathrm{hrs}=\frac{9}{2} \mathrm{hrs}$
$\therefore \frac{30}{15+\mathrm{x}}+\frac{30}{15-\mathrm{x}}=\frac{9}{2}$
$\Rightarrow \frac{30(15-x)+30(15+x)}{(15+x)(15-x)}=\frac{9}{2}$
i.e., $\frac{450-30 x+450+30 x}{225-x^{2}}=\frac{9}{2}$
$\Rightarrow 2 \times 900=9\left(225-x^{2}\right)$
On dividing both the sides by 9 ,
we get, $2 \times 100=225-x^{2}$
i.e., $x^{2}=225-200$
$\Rightarrow x^{2}=25$ and $x= \pm 5$
Rejecting the negative value of x,
we get: $x=5$
i.e., the speed of the steam $=5 \mathrm{~km} / \mathrm{hr}$

OR

36. Since two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}, x=\sqrt{\frac{5}{3}}, x=-\sqrt{\frac{5}{3}}$
$\Rightarrow\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=x^{2}-\frac{5}{3}$ or $3 x^{2}-5$ is a factor of the given polynomial.
Now, we apply the division algorithm to the given polynomial and $3 x^{2}-5$.

So, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(3 x^{2}-5\right)\left(x^{2}+2 x+1\right)+0$
Quotient $=x^{2}+2 x+1=(x+1)^{2}$
Zeroes of $(x+1)^{2}$ are $-1,-1$.
Hence, all its zeroes are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1,-1$.
37. Let a be the first term and d be the common difference of the given A.P.

Then, m times $\mathrm{m}^{\text {th }}$ term $=\mathrm{n}$ times $\mathrm{n}^{\text {th }}$ term
$\Rightarrow \mathrm{ma}_{\mathrm{m}}=\mathrm{na}_{\mathrm{n}}$
$\Rightarrow \mathrm{m}\{\mathrm{a}+(\mathrm{m}-1) \mathrm{d}\}=\mathrm{n}\{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
$\Rightarrow \mathrm{m}\{\mathrm{a}+(\mathrm{m}-1) \mathrm{d}\}-\mathrm{n}\{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}=0$
$\Rightarrow \mathrm{a}(\mathrm{m}-\mathrm{n})+\{\mathrm{m}(\mathrm{m}-1)-\mathrm{n}(\mathrm{n}-1)\} \mathrm{d}=0$
$\Rightarrow \mathrm{a}(\mathrm{m}-\mathrm{n})+(\mathrm{m}-\mathrm{n})(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=0$
$\Rightarrow(\mathrm{m}-\mathrm{n})\{\mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}\}=0$
$\Rightarrow \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=0$
$\Rightarrow \mathrm{a}_{\mathrm{m}+\mathrm{n}}=0$
Hence, the $(m+n)^{\text {th }}$ term of the given A.P. is zero.
38. Let the ten's and the unit's digits in the number be x and y, respectively. So, the number may be written as $10 \mathrm{x}+\mathrm{y}$.
When the digits are reversed, x becomes the unit's digit and y becomes the ten's digit. The number can be written as $10 \mathrm{y}+\mathrm{x}$.

According to the given condition, $x+y=9$
We are also given that nine times the number i.e., $9(10 x+y)$ is twice the numbers
obtained by reversing the order of the number i.e. $2(10 y+x)$.

$$
\begin{aligned}
& \therefore 9(10 \mathrm{x}+\mathrm{y})=2(10 \mathrm{y}+\mathrm{x}) \\
& \Rightarrow 90 \mathrm{x}+9 \mathrm{y}=20 \mathrm{y}+2 \mathrm{x}
\end{aligned}
$$

$\Rightarrow 90 \mathrm{x}-2 \mathrm{x}+9 \mathrm{y}-20 \mathrm{y}=0$
$\Rightarrow 88 \mathrm{x}-11 \mathrm{y}=0$
$\Rightarrow 8 \mathrm{x}-\mathrm{y}=0$
Adding (1) and (2), we get, $9 x=9$
$\Rightarrow \mathrm{x}=1$
Putting $\mathrm{x}=1$ in (1),
we get $y=9-1=8$
Thus, the number is
$10 \times 1+8=10+8=18$
39. Taking $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$ the above system of equations becomes
$u+2 v=2$
$2 u-v=3$
Multiplying equation (1) by 2 , and (2) by 1 , we get;
$2 u+4 v=4$
$2 u-v=3$
Subtracting equation (4) from (3), we get;
$5 \mathrm{v}=1 \Rightarrow \mathrm{v}=\frac{1}{5}$
Putting $\mathrm{v}=1 / 5$ in equation (1), we get;
$u+2 \times \frac{1}{5}=2 \Rightarrow u=2-\frac{2}{5}=\frac{8}{5}$
Here, $u=\frac{8}{5}=\frac{1}{x+y} \Rightarrow 8 x+8 y=5$
And, $v=\frac{1}{5}=\frac{1}{x-y} \Rightarrow x-y=5$
Multiplying equation (5) with 1 , and (6) with 8 , we get;
$8 x+8 y=5$
$8 x-8 y=40$
Adding equation (7) and (8), we get;
$16 x=45$
$\Rightarrow \mathrm{x}=\frac{45}{16}$
Now, putting the above value of x in equation (6), we get;
$\frac{45}{16}-\mathrm{y}=5$
$\Rightarrow \mathrm{y}=\frac{45}{16}-5=\frac{-35}{16}$
Hence, solution of the system of the given equations is;
$x=\frac{45}{16}, y=\frac{-35}{16}$

OR

39. We know, sum of roots $(\alpha+\beta)=-\frac{b}{a}$

And, product of roots $(\alpha \beta)=\frac{c}{a}$; therefore :
(i) $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta$
$\Rightarrow \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=\left(-\frac{b}{a}\right)^{2}-2 \frac{c}{a}=\frac{b^{2}}{a^{2}}-2 \frac{c}{a}=\frac{b^{2}-2 a c}{a^{2}}$
(ii) $\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)$
$=\left(-\frac{b}{a}\right)\left(\frac{b^{2}-2 a c}{a^{2}}-\frac{c}{a}\right)$
$=\left(-\frac{b}{a}\right)\left(\frac{b^{2}-2 a c-a c}{a^{2}}\right)=-\frac{b\left(b^{2}-3 a c\right)}{a^{3}}$
40. Let a be the first term and d be the common difference of the given A.P. Then,
$S_{1}=$ Sum of n terms
$\Rightarrow \mathrm{S}_{1}=\frac{\mathrm{n}}{2}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
$\mathrm{S}_{2}=$ Sum of 2 n terms
$\Rightarrow \mathrm{S}_{2}=\frac{2 \mathrm{n}}{2}[2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}]$
and, $\mathrm{S}_{3}=$ Sum of 3 n terms
$\Rightarrow \mathrm{S}_{3}=\frac{3 \mathrm{n}}{2}[2 \mathrm{a}+(3 \mathrm{n}-1) \mathrm{d}]$
Now, $\mathrm{S}_{2} \mathrm{~S}_{1}=\frac{2 \mathrm{n}}{2}[2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}]-\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$S_{2}-S_{1}=\frac{n}{2}[2\{2 a+(2 n-1) d\}-\{2 a+(n-1) d\}]$
$=\frac{n}{2}[2 a+(3 n-1) d]$
$\therefore 3\left(S_{2}-S_{1}\right)=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}$
[Using (iii)]
Hence, $S_{3}=3\left(S_{2}-S_{1}\right)$

