

Simulator

Previous Years AIEEE/JEE Mains Questions

1. Very pure hydrogen (99.9%) can be made by which of the following processes?

[AIEEE 2012]

- (1) Reaction of salt like hydrides with water
- (2) Reaction of methane with steam
- (3) Mixing natural hydrocarbons of high molecular weight
- (4) Electrolysis of water

2. In which of the following reaction H_2O_2 acts as a reducing agent? [**JEE**(**Main**) 2014]

$$(1)~\mathrm{H_2O_2} + 2\mathrm{H^+} + 2\mathrm{e^-} \rightarrow 2\mathrm{H_2O}$$

(2)
$$H_2O_2 - 2e^- \rightarrow O_2 + 2H^+$$

(3)
$$H_2O_2 + 2e^- \rightarrow 2OH^-$$

(4)
$$H_2O_2 + 2OH^- - 2e^- \rightarrow O_2 + 2H_2O$$

3. Which of the following statements about Na2O2 is not correct?

[**JEE**(**Main**) 2014]

- (1) Na₂O₂ oxidises Cr³⁺ to CrO₄²⁻ in acid medium
- (2) It is diamagnetic in nature
- (3) It is the super oxide of sodium
- (4) It is a derivative of H₂O₂

4. Hydrogen peroxide acts both as an oxidising and as a reducing agent depending upon the nature of the reacting species. In which of the following cases H₂O₂ acts as a reducing agent in acid medium?:-[JEE(Main)Online-2014]

- (1) MnO_4^-
- (2) SO_3^{2-}
- (3) KI
- $(4) \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-}$

5. Permanent hardness in water cannot be cured by: [JEE(Main)Online-2015]

- (1) Treatment with washing soda
- (2) Calgon's method

(3) Boiling

(4) Ion exchange method

1	2	3	4	5
4	2	3	1	3

6. From the following statements regarding H_2O_2 , choose the incorrect statement :

[JEE(Main)Online-2015]

- (1) It has to be stored in plastic or wax lined glass bottles in dark
- (2) It has to be kept away from dust
- (3) It can act only as an oxidizing agent
- (4) It decomposes on exposure to light
- 7. Hydrogen peroxide oxidises $[Fe(CN)_6]^{4-}$ to $[Fe(CN)_6]^{3-}$ in acidic medium but reduces $[Fe(CN)_6]^{3-}$ to $[Fe(CN)_6]^{4-}$ in alkaline medium. The other products formed are, respectively : [JEE(Main)Online-2018]
 - (1) $(H_2O + O_2)$ and $(H_2O + OH^-)$
 - (2) H_2O and $(H_2O + O_2)$
 - (3) H_2O and $(H_2O + OH^-)$
 - (4) $(H_2O + O_2)$ and H_2O

6	7
3	2

Solutions

- 1. Very pure hydrogen (99.9%) can be made by electrolysis of water.
- 2. When H₂O₂ act as reducing agent then it evolve.
- 3. Na₂O₂ is peroxide of sodium

4.
$$H_2O_2 + MnO_4^{\Theta} \rightarrow Mn^{+2} + O_2$$

(R.A)
 $H_2O_2 + SO_3^{-2} \rightarrow SO_4^{-2}$
(O.A) (R.A)
 $I^{\Theta} + H_2O_2 \rightarrow I_2 + H_2O$
(O.A)
 $Cr_2O_7^{2-} + H_2O_2 \xrightarrow{\text{non redox rxn}} CrO_5$

- 5. Permanent hardness in water cannot cured by boiling of water
- 6. H_2O_2 can act as oxidizing as well as reducing agent depend on condition.

7. (i)
$$\left[Fe^{+2} \left(CN \right)_{6} \right]^{4-} + H_{2}O_{2}^{-1} + 2H^{+}$$

$$\downarrow$$

$$\left[Fe^{+3} \left(CN \right)_{6} \right]^{3-} + 2H_{2}O^{-2}$$
(ii) $\left[Fe^{+3} \left(CN \right)_{6} \right]^{3-} + H_{2}O_{2}^{-1} + 2OH^{-}$

$$\downarrow$$

$$\left[Fe^{+2} \left(CN \right)_{6} \right]^{4-} + O_{2}^{0} + 2H_{2}O$$