Best Offline Course for JEE 2026 | Get IIT in First Attempt | Limited Seats

Magnetic Effect of Electric Current Class 12 Notes | Introduction

JEE Mains & Advanced

The electricity and magnetism are linked to each other and it is proved when the electric current passes through the copper wire, it produces a magnetic effect. The electromagnetic effects first time noticed by Hans Christian Oersted. Oersted discovered a magnetic field around a conductor carrying an electric current. The magnetic field is a quantity, which has both magnitude and direction. The direction of a magnetic field is usually taken to be the direction in which, a north pole of the compass needle moves inside it. So here you will get Magnetic Effect of Electric Current Class 12 complete Notes to prepare for Boards as well as for JEE & NEET Exams.

India's Best Exam Preparation for Class 12th - Download Now

  1. Introduction
  2. Unit of Magnetic Field
  3. Biot Savart's Law
  4. Biot Savart's law in Vector Form

India's Best Exam Preparation for Class 12th - Download Now

Oersted discovered a magnetic field around a conductor carrying an electric current. Other related facts are as follows:
(a) A magnet at rest produces a magnetic field around it while an electric charge at rest produces an electric field around it.
(b) A current-carrying conductor has a magnetic field and not an electric field around it. On the other hand, a charge moving with a uniform velocity has an electric as well as a magnetic field around it.
(c) An electric field cannot be produced without a charge whereas a magnetic field can be produced without a magnet.
(d) No poles are produced in a coil carrying current but such a coil shows north and south polarities.
(e) All oscillating or an accelerated charge produces E.M. waves also in addition to electric and magnetic fields.
                                                 Magnetic Effect of Current Class 12
Magnetic Effect of Current Class 12
 

Unit of Magnetic field

UNIT OF $\overrightarrow{\mathrm{B}}:$ MKS weber/metre $^{2},$ SI tesla, CGS maxwell cm' or gauss.

One Tesla $=$ one (weber/m') $=10^{4}$ (maxwell/cm') $=10^{4}$ gauss

Biot-Savart's Law

With the help of experimental results, Biot and Savart arrived at a mathematical expression that gives the magnetic field at some point in space in terms of the current that produces the field. That expression is based on the following experimental observations for the magnetic field $\overrightarrow{\mathrm{d} B}$ at a point $P$ associated with a length element $\overrightarrow{\mathrm{d} \ell}$ of a wire carrying a steady current I. 

 

India's Best Exam Preparation for Class 12th - Download Now

           

$\mu_{0}$ is called permeability of free space $\frac{\mu_{0}}{4 \pi}=10^{-7}$ henry/meter.

$1(\mathrm{H} / \mathrm{m})=1 \frac{\mathrm{T} \mathrm{m}}{\mathrm{A}}=1 \frac{\mathrm{Wb}}{\mathrm{Am}}=1 \frac{\mathrm{N}}{\mathrm{A}^{2}}=1 \frac{\mathrm{Ns}^{2}}{\mathrm{c}^{2}}$

DIMENSIONS of $\mu_{0}=\left[\mathrm{M}^{\prime} \mathrm{L}^{\prime} \mathrm{T}^{-2} \mathrm{A}^{-2}\right]$

For vaccum $: \sqrt{\frac{1}{\mu_{0} \varepsilon_{0}}}=\mathrm{c}=3 \times 10^{8} \mathrm{m} / \mathrm{s}$

Biot-Savart law in Vector form

[Note: Static charge is a source of electric field but not of magnetic field, whereas the moving charge is a source of electric field as well as magnetic field.]



the direction of $\mathrm{d} \mathrm{B}$ is perpendicular to the plane determined by $\overrightarrow{\mathrm{d} \ell}$ and $\overrightarrow{\mathrm{r}}$ (i.e. if $\overrightarrow{\mathrm{d} \ell}$ and $\overrightarrow{\mathrm{r}}$ lie in the plane of the paper then $\overrightarrow{\mathrm{dB}}$ is $\perp$ to plane of the paper). In the figure, direction of

$\overrightarrow{\mathrm{dB}}$ is into the page. (Use right hand screw rule).

India's Best Exam Preparation for Class 12th - Download Now

Click here for the Video tutorials of Magnetic Effect of Current Class 12

Leave a comment

Comments

swastik biswas
Oct. 7, 2024, 6:35 a.m.
peace
Shivam kanaujiya
Sept. 15, 2023, 6:35 a.m.
Hello sir
Shivam kanaujiya
Sept. 15, 2023, 6:35 a.m.
Hello sir this is padai
Corey Post
March 17, 2023, 6:35 a.m.
What happens when you make coils side by side in close proximity with each other? I have two formations in mind. One wire format you have one wire in figure eights going back and fourth between two rods. The other you have two separate rods but the same power source. meaning the coil goes down rod 1 and up rod 2?
Prakriti
Sept. 10, 2022, 9:18 p.m.
Thanks for this...😊it's just easy to understand
Sakshi kumari
Dec. 22, 2021, 10:28 a.m.
It is very easy to understand. It's explanation is too good
Tushar Sahu
Nov. 6, 2020, 4:29 p.m.
That's good And also helpful for me So Thanks 😁
Ali Hamza
Aug. 18, 2020, 10:54 a.m.
Thanks a lot dear.
None